| data | ||
| out | ||
| .gitignore | ||
| .python-version | ||
| auswerting.ipynb | ||
| pyproject.toml | ||
| README.md | ||
| uv.lock | ||
Survey Analysis: Life Cycle Assessment of E-Cigarettes
This repository contains the analysis of survey data regarding the life cycle assessment (LCA) of e-cigarettes. The analysis is performed using a Jupyter notebook that processes survey responses and generates visualizations.
📊 Project Overview
The auswerting.ipynb notebook analyzes survey responses.
📁 Data Requirements
Survey Data
Important: The survey data file is not included in this public repository for privacy reasons.
You need to copy your survey data to:
./data/Umfrage_ Oekobilanz von E-Zigaretten.json
The expected JSON structure should contain:
questions: Object with question definitionsresponses: Array of survey responses
Generated Outputs
The notebook generates PDF visualizations for specific questions:
./out/q2.pdf- E-cigarette usage frequency analysis./out/q5.pdf- [Question 5 analysis]./out/q13.pdf- [Question 13 analysis]
🚀 Setup and Installation
Prerequisites
- Python 3.12 or higher
- uv package manager
- VSCode with Jupyter extension
Installation Steps
-
Clone the repository
git clone <repository-url> cd umfrage_projektarbeit -
Install dependencies using uv
uv syncThis will create a virtual environment and install all required packages.
-
Activate the virtual environment
source .venv/bin/activate # On Linux/macOS # or .venv\Scripts\activate # On Windows
📓 Running the Notebook in VSCode
Method 1: Using VSCode Jupyter Extension
- Open VSCode and ensure you have the Jupyter extension installed
- Open the project folder in VSCode
- Select the Python interpreter:
- Press
Ctrl+Shift+P(orCmd+Shift+Pon macOS) - Type "Python: Select Interpreter"
- Choose the interpreter from
.venv/bin/python
- Press
- Open the notebook:
auswerting.ipynb - Run cells: Use the play button next to each cell or press
Shift+Enter
Method 2: Using Jupyter Lab/Notebook
-
Activate the virtual environment
source .venv/bin/activate -
Launch Jupyter
jupyter lab # or jupyter notebook -
Navigate to the notebook and run the cells
📦 Dependencies
The project uses the following main dependencies:
jupyter>=1.1.1- Jupyter notebook environmentmatplotlib>=3.10.5- Plotting libraryrich>=14.1.0- Rich text and formattingseaborn>=0.13.2- Statistical data visualization
📈 Analysis Output
The notebook generates:
- Interactive visualizations for survey questions
- PDF exports of key charts (stored in
./out/) - Statistical summaries of responses
- Data filtering and processing for specific questions of interest